PHYSICS CAPACITY TRANSCRIPT

LEARNER'S NAME Rick Steffe

Purpose \& Vision:	Understand and Apply Physics Concepts	$\begin{aligned} & \mathrm{T} \\ & \mathbf{O} \\ & \mathbf{T} \\ & \mathbf{A} \\ & \mathbf{L} \end{aligned}$				5 0 0 3	3-D
CAPACITY	CAPACITY BREAKDOWN	0					PORTFOLIO
Measurement and Data Analysis	Use Scientific Notation	1	Q				
	Estimate results	2	x				
	Know metric system and how to convert units	3	θ				
	Know what measurements are needed to perform specific calculations	4	θ				
	Use dimensional analysis in problem solving	5	θ				
	Develop personal estimates of length, area, vol., speed measurements	6	θ				
Motion	Define speed and give units	8	θ				
	Distinguish between speed \& velocity	9	Q	x			Throwing up at School
	Define acceleration and provide units	10	θ				
	Describe the motion of an object in free fall from rest	11	Q	x			Throwing up at School
	Calculate velocity, average velocity, \& acceleration	12	θ	x			Throwing up at School
	Use distance-time \& speed time graphs	13	θ				
	Use kinematic eqns. to solve free fall \& uniform accel. problems	14	θ				
Newton's Laws	Define inertia \& state Newton's First Law	15	θ	x			Throwing up at School
	Distinguish between mass, volume, \& weight	16	θ				
	Distinguish between kilogram and newton as units of measure	17	θ				
	Explain why something not connected to the ground keeps up	18	θ				
	Resolve object on a slope into weight components (parl \& perp)	19	θ				
	Define \& explain net force	20	θ				
	State relationship between net force, mass, \& accel. (2nd Law)	21	θ				
	Describe effect of friction on stationary \& moving object	22	θ				
	Determine coefficients of static and kinetic friction	23	θ				
	Determine pressure based on force and unit area	24	θ				

	Apply 2nd Law to explain why free fall accel. not dependent on mass	25	θ				
	Explain \& determine terminal velocity	26	\bigcirc				
	Explain why at least two objects are invloved whenever a force acts	27	\bigcirc				
			LEARNING PROCESS				
		T O T A L	$\begin{aligned} & \text { E. } \\ & \text { 틀 } \\ & \text { 르 } \end{aligned}$	$\begin{aligned} & \mathbb{0} \\ & \frac{0}{0} \\ & \frac{0}{3} \\ & 0 \\ & \underline{y} \end{aligned}$		$\begin{aligned} & \text { 틍 } \\ & 0 \\ & 0 \\ & 3 \end{aligned}$	$\begin{gathered} 3-D \\ \text { PORTFOLIO } \end{gathered}$
CAPACITY	CAPACITY BREAKDOWN						
Newton's Laws continued	State Newton's 3rd Law	28	\bigcirc				
	Given an action force, identify reaction force	29	\bigcirc				
	Explain why accel. caused by action \& reaction forces do not have to $=$	30	\bigcirc				
	Explain why an action force is not cancelled by reaction force	31	\bigcirc				
Vectors \& Projectile Motion	Distinguish between vector \& scalar quantity	32	\bigcirc				
	Draw vector diagrams for velocity, forces, etc.	33	\bigcirc				
	Resolve a vector into horizontal \& vertical components	34	θ				
	Use trigonometry to solve for vector components \& resultants	35	\bigcirc				
	Solve equilibrium vector problems	36	\bigcirc				
	Resolve projectile motion into vertical \& horizontal components	37	\bigcirc	x			Equation Booklet
	Resolve complex force or motion problems involving several vectors	38	\bigcirc	X			Equation Booklet
	Solve projectile motion problems	39	\bigcirc				
Momentum	Define momentum	40	\bigcirc				
	Define impulse and relate to momentum	41	\bigcirc				
	Give examples of when size of force \& time affect momentum	42	\bigcirc				
	Relate impulse to sports swings/throws/kicks and air bags	43	\bigcirc				
	State law of conservation of momemtum	44	\bigcirc				
	Distinguish between inelastic \& elastic collisions	45	\bigcirc				
	Solve elastic, inelastic, and explosion collision problems	46	\bigcirc	x			Equation Booklet
	Solve impulse and conservation of momentum problems	47	\bigcirc	X			Equation Booklet
Energy	Determine work done, given force \& distance moved	48	\bigcirc				
	Determine amount of power required, given work \& time	49	\bigcirc				
	Solve work and power problems	50	\bigcirc				

	Describe hydrostatic pressure and solve related problems	84	θ				
	Use Archimede's Principle to solve buoyancy problems	85	θ				
	Use Pascal's Principle to solve hydraulic cylinder problems problems	86	θ				
	Use the Ideal Gas Law to solve gas pressure, temperature and volume	87	θ				
	Convert between temperture units of Kelvin, Celcius and Fahrenheit	88	θ				
	Calculate linear, area and volume expansion given related information	89	θ				
	Use specific heat, heat of fusioon and heat of vaporization to calculate h	90	θ				
	Use Hooke's Law to solve force constant/elasticity problems	91	θ				
			θ				
Universal Gravitation	Explain Newton's idea that the moon, like an apple falls towards earth	92	θ				
	Explain why moon does not fall into earth, nor planets into the sun	93	θ				
	State Newton's law of universal gravitation	94	θ				
	Explain the significance of the inverse-square law	95	Q				
	Distinguish between g (accel. gravity) and G (gravitational constant)	96	θ				
	Describe gravitational field	97	θ				
	Solve universal gravitation problems	98	x				
	Solve gravitational field problems	99	x				

	Solve wave motion，Doppler effect，and standing wave problems	134	区					
Sound	Explain the origin of sound	135	区					
	Discuss media that transmit sound and the coresponding speeds	136	区					
	Explain forced vibrations，natural frequency and resonance	137	区					
	Demonstrate interference and beats	138	区					
Light，Color， Reflection and Refraction	Solve speed of light problems	139	区					
	Explain electromagnetic spectrum	140	区					
	Distinguish between color by reflection and color by transmission	141	区					
	Solve Reflection Problems	142	区					
	Solve Angle of Incidence Problems	143	区					
Geometric Optics	Solve Lens Problems	144	区					
	Solve Refraction Problems	145	区					
	Solve Critical Angle Problems	146	区					
	Construct Images using Ray Diagrams	147	区					
	Describe the function of a common optical instrument	148	区					
Light as a Wave	Describe the defraction of light waves	149	区					
	Describe how interference applies to light waves	150	区					
	Solve wave length and slit separation problems	151	x					

