PHYSICS CAPACITY TRANSCRIPT

LEARNER'S NAME Rick Steffe				LEARNING PROCESS			
Purpose & Vision:	Understand and Apply Physics Concepts				KNOW-HOW	WISDOM	3-D
CAPACITY	CAPACITY BREAKDOWN	0					PORTFOLIO
Measurement	Use Scientific Notation	1	0				
and Data	Estimate results	2	Х				
Analysis	Know metric system and how to convert units	3	\Diamond				
	Know what measurements are needed to perform specific calculations	4	\Diamond				
	Use dimensional analysis in problem solving	5	0				
	Develop personal estimates of length, area, vol., speed measurements	6	0				
Motion	Define speed and give units	8	\Diamond				
	Distinguish between speed & velocity	9	0	Х			Throwing up at School
	Define acceleration and provide units	10	\Diamond				
	Describe the motion of an object in free fall from rest	11	\Diamond	Х			Throwing up at School
	Calculate velocity, average velocity, & acceleration	12	\Diamond	Х			Throwing up at School
	Use distance-time & speed time graphs	13	0				
	Use kinematic eqns. to solve free fall & uniform accel. problems	14	\Diamond				
Newton's Laws	Define inertia & state Newton's First Law	15	\Diamond	Х			Throwing up at School
	Distinguish between mass, volume, & weight	16	0				
	Distinguish between kilogram and newton as units of measure	17	0				
	Explain why something not connected to the ground keeps up	18	0				
	Resolve object on a slope into weight components (parl & perp)	19	0				
	Define & explain net force State relationship between net force, mass, & accel. (2nd Law)		0				
			\Diamond				
	Describe effect of friction on stationary & moving object	22	0				
	Determine coefficients of static and kinetic friction	23	0				
	Determine pressure based on force and unit area	24	0				

	Apply 2nd Law to explain why free fall accel. not dependent on mass	25	0				
	Explain & determine terminal velocity	26	\Diamond				
	Explain why at least two objects are invloved whenever a force acts	27	0				
					LEAR	NING	PROCESS
		T 0 T A L	Inform.	Knowledge	KnowHow	Wisdom	3-D
CAPACITY	CAPACITY BREAKDOWN						PORTFOLI
Newton's Laws	State Newton's 3rd Law	28	\Diamond				
continued	Given an action force, identify reaction force	29	\Diamond				
	Explain why accel. caused by action & reaction forces do not have to =	30	0				
	Explain why an action force is not cancelled by reaction force	31	\Diamond				
Vectors &	Distinguish between vector & scalar quantity	32	\Diamond				
Projectile	Draw vector diagrams for velocity, forces, etc.	33	\Diamond				
Motion	Resolve a vector into horizontal & vertical components	34	\Diamond				
	Use trigonometry to solve for vector components & resultants	35	\Diamond				
	Solve equilibrium vector problems	36	\Diamond				
	Resolve projectile motion into vertical & horizontal components	37	0	Х			Equation Booklet
	Resolve complex force or motion problems involving several vectors	38	0	Х			Equation Booklet
	Solve projectile motion problems	39	0				
Momentum	Define momentum	40	0				
	Define impulse and relate to momentum	41	\Diamond				
	Give examples of when size of force & time affect momentum	42	0				
	Relate impulse to sports swings/throws/kicks and air bags	43	0				
	State law of conservation of momentum	44	0				
	Distinguish between inelastic & elastic collisions	45	0				
	Solve elastic, inelastic, and explosion collision problems	46	0	Х			Equation Booklet
	Solve impulse and conservation of momentum problems	47	0	Х			Equation Booklet
Energy	Determine work done, given force & distance moved	48	0				
	Determine amount of power required, given work & time	49	\Diamond				
	Solve work and power problems	50	0				

	Define work in terms of energy	51	\Diamond		
	Distinguish between mechanical, gravitational, potential, & kinetic energ	52	0		
	Explain when grav. PE changes & not	53	\Diamond		
	Describe how kinetic energy depends on speed	54	0		
	State the law of conservation of energy	55	\Diamond		
	Solve conservation of energy problems	56	0		
	Describe the function of a lever, pulley, inclined plane, & wedge	57	0		
	Give examples when mechanical advantage > 1 and < 1	58	0		
	Explain why no machine can have efficiency of 100%	59	0		
	Solve mechanical advantage & efficiency problems	60	0		
Circular Motion	Distinguish between rotate & revolve	61	0		
Center of	Distinguish between linear speed & rotational speed	62	0		
Gravity &	Give examples of centripetal force and acceleration	63	0		
Rotational	Describe resulting motion if centripetal force stops	64	0		
Mechanics	Explain why incorrect to say centifugal force pulls outward	65	0		
	Describe how you can simulate gravity in a space colony	66	0		
	Solve period, frequency, & speed problems	67	0		
	Solve centripetal acceleration & centripetal force problems	68	0		
	Describe center of gravity (COG)	69	0		
	Use a plumb line & bob to find center of gravity	70	0		
	Given center of gravity and area of support, predict if will topple	71	0		
	State equilibrium conditions	72	0		
	Define torque & describe what it depends on	73	0		
	Describe the conditions for one torque to balance another	74	0		
	Given COG & position & direction of forces, tell whether rotation	75	\Diamond		
	Solve torque problems	76	\Diamond		
	Describe what rotational inertia depends on	77	0		
	Define angular momentum and when it reamins the same & changes	78	0		
	Solve angular momentum problems	79	0		
Materials	Understand density and perform related calculations	80	\Diamond		
	Define elasticity	81	0		
	Solve stress, strain and Young's modulus problems	82	\Diamond		
	Solve shear modulus problems	83	\Diamond		

	Describe hydrostatic pressure and solve related problems	84	0			
	Use Archimede's Principle to solve buoyancy problems	85	0			
	Use Pascal's Principle to solve hydraulic cylinder problems problems	86	0			
	Use the Ideal Gas Law to solve gas pressure, temperature and volume	87	0			
	Convert between temperture units of Kelvin, Celcius and Fahrenheit	88	\Diamond			
	Calculate linear, area and volume expansion given related information	89	0			
	Use specific heat, heat of fusioon and heat of vaporization to calculate h	90	0			
	Use Hooke's Law to solve force constant/elasticity problems					
			0			
Universal	Explain Newton's idea that the moon, like an apple falls towards earth	92	0			
Gravitation	Explain why moon does not fall into earth, nor planets into the sun	93	0			
	State Newton's law of universal gravitation	94	0			
	Explain the significance of the inverse-square law	95	0			
	Distinguish between g (accel. gravity) and G (gravitational constant)	96	0			
	Describe gravitational field	97	0			
	Solve universal gravitation problems	98	Х			
	Solve gravitational field problems	99	Х			

		LEARNING PROCESS							
T O T A L	Inform.	Knowledge	KnowHow	Wisdom	3-D PORTFOLIO				

CAPACITY	CAPACITY BREAKDOWN				
Electric Charge,	Discuss electrical forces and charges	100	X		
Fields, and	Discuss conservation of charge	101	X		
Potential	Introduce Colomb's Law and do problems	102	X		
	Describe the nature of conductors and insulators	103	X		
	Discuss different types of charging	104	X		
	Define electric field and electric field lines	105	X		
	Explain electron shielding	106	X		
	Solve electric potential and energy storage problems	107	X		
	Describe how a Van de Graff Generator works	108	X		
Electric Current ar	Introduce current as a flow of charge	109	X		
and Circuit	Discuss voltage sources	110	X		
Analysis	Describe electric resistance and solve Ohm's law problems	111	X		
•	Distinguish between AC and DC	112	X		
	Speed and source of electrons in a circuit	113	X		
	Discuss Electric Power and solve problems	114	X		
	Introduce electric circuits and distinguish between series and parallel	115	X		
	Discuss schematic diagrams	116	X		
	Explain how to combinge resistors in a compound circuit	117	Х		
	Solve for voltage, current, resistance and capacitance in circuits	118	Х		
Magnetism and	Explain magnetic poles and magnetic fields	119	Х		
Magnetic Fields	Discuss electric currents and magnetic fields	120	Х		
	Explain magnetic forces on moving charged particles and current	121	Х		
	Introduce electromagnetic Induction	122	Х		
	Explain Faraday's Law	123	Х		
	Discuss the properties of transformers	124	Х		
	Explain induction of electric and magnetic fields	125	X		
	Solve magnetic forces, fields, and electromagnetic induction problems	126	X		
Vibrations and	Explain vibration of a pendulum	127	X		
Waves	Decribe the nature of waves and motion and speed	128	X		
	Distinguish between transverse and longitudinal waves	129	×		
	Explain constructive and destructive interference	130	×		
	Discuss the Doppler effect	131	X		
	What are bow and shock waves	132	X		
	Solve simple harmonic motion problems	133	X		
	·				

	Solve wave motion, Doppler effect, and standing wave problems	134	X		
Sound	Explain the origin of sound	135	X		
	Discuss media that transmit sound and the coresponding speeds	136	X		
	Explain forced vibrations, natural frequency and resonance	137	X		
	Demonstrate interference and beats	138	X		
Light, Color,	Solve speed of light problems	139	X		
Reflection and	Explain electromagnetic spectrum	140	X		
Refraction	Distinguish between color by reflection and color by transmission	141	X		
	Solve Reflection Problems	142	X		
	Solve Angle of Incidence Problems	143	X		
Geometric	Solve Lens Problems	144	X		
Optics	Solve Refraction Problems	145	X		
	Solve Critical Angle Problems	146	X		
	Construct Images using Ray Diagrams	147	X		
	Describe the function of a common optical instrument	148	X		
Light as a Wave	Describe the defraction of light waves	149	X		
	Describe how interference applies to light waves	150	X		
	Solve wave length and slit separation problems	151	X		